UNIVERSITÄT REGENSBURG Fakultät für Mathematik

EXERCISE SHEET 1

Raphael Zentner Felix Eberhart

Exercices labeled with a star * are going to be graded. Please hand in solutions to Felix Eberhart not later than Monday 10 May at noon.

Exercise 1. Let M be a smooth manifold.

- (a) Show that two smooth vector bundles over M are isomorphic as bundles if and only if their spaces of sections are isomorphic as $\mathcal{C}^{\infty}(M)$ -modules.
- (b) Let $p: P \to M$ be a principal fibre bundle with structure group G and let G act on a set X via $\rho: G \to \operatorname{Aut}(X)$. Show that there is a canonical isomorphism

$$\Gamma(P \times_{\rho} X) \cong \{ f \colon P \to X \mid f(pg) = \rho(g)f(p) \}.$$

- (c) Let $p: E \to M$ be a vector bundle with fibre $V, \mathcal{U} = \{U_i \mid i \in I\}$ an open covering of M and for every $i \in I$ let $\phi_i: E|_{U_i} \to U_i \times V$ be an isomorphism of vector bundles. The map $\phi_i \circ \phi_j^{-1}: U_i \cap U_j \times V \to U_i \cap U_j \times V$ is then a morphism of vector bundles and is thus of the form $\phi_i \circ \phi_j^{-1}((u, v)) = (u, \phi_{ij}(u) \cdot v)$ where $\phi_{ij}: U_i \cap U_j \to Gl(V)$ is a continuous (or smooth in the case of smooth vector bundles) map. Show that that a system $(\phi_{ij}: U_i \cap U_j \to Gl(V))_{i,j \in I}$ arises from a vector bundle in the above way if and only if it is a *cocycle*, i.e. it has the following properties:
 - $\forall i \in I : \phi_{ii} \equiv const_{id_V}$
 - $\forall i, j, k \in I : \phi_{ij} \circ \phi_{jk} = \phi_{ik}$
- (d) Let $p: E \to M$ and $q: F \to M$ be vector bundles with fibres V and W. Then there is an open covering $(U_i \mid i \in I)$ over which both E and F can be trivialized. Choose such trivializations and let (ϕ_{ij}) be the corresponding cocycle of E and (ψ_{ij}) the cocycle of F.
 - (i) For $i, j \in I$ let

$$\phi_{ij} \otimes \psi_{ij} \colon U_i \cap U_j \to Gl(V \otimes W),$$
$$u \mapsto (v \otimes w \mapsto \phi_{ij}(v) \otimes \psi_{ij}(w))$$

Show that this defines a cocycle and thus a vector bundle. This bundle is denoted by $E \otimes F$ and called the *tensor product bundle*.

(ii) Show that if E and F are smooth vector bundles there is a canonical isomorphism

$$\Gamma(E \otimes F) \cong \Gamma(E) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(F)$$

where $\Gamma(-)$ denotes smooth sections.

(e) Let $p: P \to M$ be a smooth principal fibre bundle with structure group G, let $\rho: G \to Gl(V)$ and $\rho': G \to Gl(W)$ be two smooth representations of G and let $E := P \times_{\rho} V$ and $F := P \times_{\rho'} W$ be the associated smooth vector bundles. Denote by

$$\rho \otimes \rho' \colon G \to Gl(V \otimes W),$$
$$g \mapsto (v \otimes w \mapsto (\rho(g) \cdot v) \otimes (\rho'(g) \cdot w)$$

the diagonal action on $V \otimes W$. Show that $P \times_{\rho \otimes \rho'} (V \otimes W)$ is isomorphic to $E \otimes F$.

Exercise 2*. Compute the parallel transport for the covariant derivative d + a, where $a \in \Omega^1([0, 1], i\mathbb{R})$ on the trivial complex line bundle on [0, 1] along the path joining the point 0 to the point 1.

Exercice 3*. Denote by $\pi: S^3 \to S^2$ the Hopf fibration introduced in class, a principal S^1 -fibre bundle. For any $n \in \mathbb{N}$, we consider the cyclic subgroup $C_n \subseteq S^1$ generated by the n^{th} roots of unity. We denote by $Q_n := S^3/C_n$ the quotient space.

- (a) Show that Q_n is a principal S^1 -fibre bundle over S^2 in a natural way.
- (b) Let $\rho: S^1 \to \operatorname{Aut}(\mathbb{C})$ denote the canonical isomorphism which maps a complex number to the multiplication by that number. Determine the first Chern classes of the complex line bundles $Q_n \times_{\rho} \mathbb{C}$.
- (c) Compare these line bundles with the tensor powers $H^{\otimes k}$ of the tautological line bundle.

Exercice 4. Solve the analogue of Exercice 3 for the general Hopf fibration $S^1 \to S^{2n+1} \to \mathbb{CP}^n$.

Exercice 5. Suppose $\pi: P \to M$ is a principal *G*-fibre bundle. Suppose *P* carries a Riemannian metric (suppressed from notation), and that *G* acts (freely) by isometries on *P*. Show that the orthogonal complement to the vertical tangent bundle of *P* is a connection.

Exercice 6. For the Hopf fibration $\pi: S^3 \to S^2$ the S^1 -action is by isometries. Write down the connection 1-form for the connection studied in the previous exercice.

Exercice 7*. In class we have defined two $S^3 \cong SU(2)$ -bundles P_{\pm} over the quaternionic projective space \mathbb{HP}^1 , say P_+ via the action

$$S^{4n+3} \times S^3 \to S^{4n+3}$$
$$((h_0, \dots, h_n), g) \mapsto (h_0 g, \dots, h_n g)$$

and P_{-} via the action

$$S^{4n+3} \times S^3 \to S^{4n+3}$$
$$((h_0, \dots, h_n), g) \mapsto (\overline{g}h_0, \dots, \overline{g}h_n)$$

Here \overline{g} denotes the quaternionic conjugation of g, and S^3 is identified with the quaternions of unit length.

- (a) Show that the quaternionic projective space \mathbb{HP}^1 is diffeomorphic to $S^4.$
- (b) Show that the action of S^3 is by isometries in both cases.
- (c) Write down the connection 1-forms of the connection given by the orthogonal complement of the vertical tangent bundle in both cases.
- (d) Decide whether any of these connections is selfdual or anti-selfdual.