Exercise Sheet 1

Raphael Zentner
Felix Eberhart
Exercices labeled with a star * are going to be graded. Please hand in solutions to Felix Eberhart not later than Monday 10 May at noon.

Exercise 1. Let M be a smooth manifold.
(a) Show that two smooth vector bundles over M are isomorphic as bundles if and only if their spaces of sections are isomorphic as $\mathcal{C}^{\infty}(M)$-modules.
(b) Let $p: P \rightarrow M$ be a principal fibre bundle with structure group G and let G act on a set X via $\rho: G \rightarrow \operatorname{Aut}(X)$. Show that there is a canonical isomorphism

$$
\Gamma\left(P \times_{\rho} X\right) \cong\{f: P \rightarrow X \mid f(p g)=\rho(g) f(p)\}
$$

(c) Let $p: E \rightarrow M$ be a vector bundle with fibre $V, \mathcal{U}=\left\{U_{i} \mid i \in I\right\}$ an open covering of M and for every $i \in I$ let $\phi_{i}:\left.E\right|_{U_{i}} \rightarrow U_{i} \times V$ be an isomorphism of vector bundles. The map $\phi_{i} \circ \phi_{j}^{-1}: U_{i} \cap U_{j} \times V \rightarrow$ $U_{i} \cap U_{j} \times V$ is then a morphism of vector bundles and is thus of the form $\phi_{i} \circ \phi_{j}^{-1}((u, v))=\left(u, \phi_{i j}(u) \cdot v\right)$ where $\phi_{i j}: U_{i} \cap U_{j} \rightarrow G l(V)$ is a continuous (or smooth in the case of smooth vector bundles) map. Show that that a system $\left(\phi_{i j}: U_{i} \cap U_{j} \rightarrow G l(V)\right)_{i, j \in I}$ arises from a vector bundle in the above way if and only if it is a cocycle, i.e. it has the following properties:

- $\forall i \in I: \phi_{i i} \equiv$ const $_{\mathrm{id}_{V}}$
- $\forall i, j, k \in I: \phi_{i j} \circ \phi_{j k}=\phi_{i k}$
(d) Let $p: E \rightarrow M$ and $q: F \rightarrow M$ be vector bundles with fibres V and W. Then there is an open covering $\left(U_{i} \mid i \in I\right)$ over which both E and F can be trivialized. Choose such trivializations and let $\left(\phi_{i j}\right)$ be the corresponding cocycle of E and $\left(\psi_{i j}\right)$ the cocycle of F.
(i) For $i, j \in I$ let

$$
\begin{aligned}
\phi_{i j} \otimes \psi_{i j}: U_{i} \cap U_{j} & \rightarrow G l(V \otimes W), \\
u & \mapsto\left(v \otimes w \mapsto \phi_{i j}(v) \otimes \psi_{i j}(w)\right)
\end{aligned}
$$

Show that this defines a cocycle and thus a vector bundle. This bundle is denoted by $E \otimes F$ and called the tensor product bundle.
(ii) Show that if E and F are smooth vector bundles there is a canonical isomorphism

$$
\Gamma(E \otimes F) \cong \Gamma(E) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(F)
$$

where $\Gamma(-)$ denotes smooth sections.
(e) Let $p: P \rightarrow M$ be a smooth principal fibre bundle with structure group G, let $\rho: G \rightarrow G l(V)$ and $\rho^{\prime}: G \rightarrow G l(W)$ be two smooth representations of G and let $E:=P \times{ }_{\rho} V$ and $F:=P \times{ }_{\rho^{\prime}} W$ be the associated smooth vector bundles. Denote by

$$
\begin{aligned}
\rho \otimes \rho^{\prime}: G & \rightarrow G l(V \otimes W), \\
g & \mapsto\left(v \otimes w \mapsto(\rho(g) \cdot v) \otimes\left(\rho^{\prime}(g) \cdot w\right)\right.
\end{aligned}
$$

the diagonal action on $V \otimes W$. Show that $P \times{ }_{\rho \otimes \rho^{\prime}}(V \otimes W)$ is isomorphic to $E \otimes F$.

Exercise 2*. Compute the parallel transport for the covariant derivative $d+a$, where $a \in \Omega^{1}([0,1], i \mathbb{R})$ on the trivial complex line bundle on $[0,1]$ along the path joining the point 0 to the point 1 .

Exercice 3*. Denote by $\pi: S^{3} \rightarrow S^{2}$ the Hopf fibration introduced in class, a principal S^{1}-fibre bundle. For any $n \in \mathbb{N}$, we consider the cyclic subgroup $C_{n} \subseteq S^{1}$ generated by the $n^{t h}$ roots of unity. We denote by $Q_{n}:=S^{3} / C_{n}$ the quotient space.
(a) Show that Q_{n} is a principal S^{1}-fibre bundle over S^{2} in a natural way.
(b) Let $\rho: S^{1} \rightarrow \operatorname{Aut}(\mathbb{C})$ denote the canonical isomorphism which maps a complex number to the multiplication by that number. Determine the first Chern classes of the complex line bundles $Q_{n} \times{ }_{\rho} \mathbb{C}$.
(c) Compare these line bundles with the tensor powers $H^{\otimes k}$ of the tautological line bundle.

Exercice 4. Solve the analogue of Exercice 3 for the general Hopf fibration $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C P}^{n}$.

Exercice 5. Suppose $\pi: P \rightarrow M$ is a principal G-fibre bundle. Suppose P carries a Riemannian metric (suppressed from notation), and that G acts (freely) by isometries on P. Show that the orthogonal complement to the vertical tangent bundle of P is a connection.

Exercice 6. For the Hopf fibration $\pi: S^{3} \rightarrow S^{2}$ the S^{1}-action is by isometries. Write down the connection 1-form for the connection studied in the previous exercice.
Exercice 7^{*}. In class we have defined two $S^{3} \cong S U(2)$-bundles $P_{ \pm}$over the quaternionic projective space $\mathbb{H} \mathbb{P}^{1}$, say P_{+}via the action

$$
\begin{aligned}
S^{4 n+3} \times S^{3} & \rightarrow S^{4 n+3} \\
\left(\left(h_{0}, \ldots, h_{n}\right), g\right) & \mapsto\left(h_{0} g, \ldots, h_{n} g\right)
\end{aligned}
$$

and P_{-}via the action

$$
\begin{aligned}
S^{4 n+3} \times S^{3} & \rightarrow S^{4 n+3} \\
\left(\left(h_{0}, \ldots, h_{n}\right), g\right) & \mapsto\left(\bar{g} h_{0}, \ldots, \bar{g} h_{n}\right)
\end{aligned}
$$

Here \bar{g} denotes the quaternionic conjugation of g, and S^{3} is identified with the quaternions of unit length.
(a) Show that the quaternionic projective space $\mathbb{H P}^{1}$ is diffeomorphic to S^{4}.
(b) Show that the action of S^{3} is by isometries in both cases.
(c) Write down the connection 1-forms of the connection given by the orthogonal complement of the vertical tangent bundle in both cases.
(d) Decide whether any of these connections is selfdual or anti-selfdual.

