Exercise Sheet 2

Raphael Zentner
Felix Eberhart

Exercices labeled with a star * are going to be graded. Please hand in solutions to Felix Eberhart not later than Monday 31 May at noon.

Exercice 1*. Let $\pi: P \rightarrow M$ be a principal fibre bundle with a connection A over a connected base M. Parallel transport along a closed loop $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=\gamma(1)=x$, starting at $u \in \pi^{-1}(x)$, defines an element $\in G$ by the formula

$$
\operatorname{Par}_{\gamma}^{A}(u)=: u \cdot h o l_{u}^{A}(\gamma)
$$

This is called the holonomy of γ centered at u with respect to the connection A.
(a) Show that $\operatorname{hol}_{u}^{A}(\gamma * \delta)=\operatorname{hol}_{u}^{A}(\gamma) \operatorname{hol}_{u}^{A}(\delta)$, where $*$ denotes the composition of paths. (We use the maybe unusual convention that the path $\gamma * \delta$ denotes the path which first follows δ, then γ.)
(b) Show that $h o l_{u g}=g^{-1} h o l_{u} g$.
(c) Suppose $\mu:[0,1] \rightarrow M$ is some path on M. Then we have

$$
\operatorname{hol}_{\operatorname{Par}_{\mu}^{A}(u)}^{A}\left(\mu * \gamma * \mu^{-}\right)=h o l_{u}^{A}(\gamma)
$$

Here, μ^{-}denotes the inverse path.
Taking holonomies along closed paths based at u defines a subgroup $H o l_{u}(A)$ of G, called the holonomy group of A centered at u, and taking holonomies of loops homotopic to the constant loop defines a subgroup $\operatorname{Hol}_{u}^{0}(A)$ which is called the reduced holonomy group.
(d) Show that $\operatorname{Hol}_{u}^{0}(A)$ is a normal subgroup of $\operatorname{Hol}_{u}(A)$.
(e) Show the Holonomy reduction theorem: Let $P^{A}(u)$ denote the set of points that can be reached by parallel transport along (not only closed) paths starting from u. Then this defines a reduction of the structure group from G to $\operatorname{Hol}_{u}(A)$ of the bundle $\pi: P \rightarrow M$.
(f) Show the Theorem of Ambrose and Singer: Then the Lie algebra $\mathfrak{h o l}_{u}(A)$ of the holonomy group $\operatorname{Hol}_{u}(A)$ is given as follows:

$$
\mathfrak{h o l}_{u}(A)=\left\{\Omega_{q}^{A}(\xi, \zeta) \mid q \in P^{A}(u), \xi, \zeta \in T P\right\}
$$

where Ω^{A} denotes the curvature of A.
(g) Show that if A is a flat connection, then the holonomy descends to a group homomorphism

$$
\text { hol: } \begin{aligned}
\pi_{1}(M, x) & \rightarrow G \\
{[\gamma] } & \mapsto h o l_{u}^{A}(\gamma) .
\end{aligned}
$$

Exercice 2*. Let E be a $U(2)$-vector bundle, and P_{E} its associated unitary frame bundle, a $U(2)$-principal fibre bundle. We denote by $\mathfrak{s u}(E)$ the subbundle of the endomorphism-bundle $\operatorname{End}(E) \cong E \otimes E^{*}$ consisting of trace-free and skey-adjoint endomorphisms. The aim of this exercise is to show that we have

$$
p_{1}(\mathfrak{s u}(E))=-4 c_{2}(E)+c_{1}(E)^{2} .
$$

(a) Show that $\mathfrak{s u}(E) \otimes_{\mathbb{R}} \mathbb{C} \cong \operatorname{End}_{0}(E)$, where $\operatorname{End}_{0}(E)$ denotes the trace-free endomorphisms of E. Show that there is a canonical isomorphism $\operatorname{End}_{0}(E) \oplus \mathbb{C} \cong \operatorname{End}(E)$.
(b) By definition of the first Pontryagin class we have

$$
p_{1}(\mathfrak{s u}(E))=-c_{2}\left(\mathfrak{s u}(E) \otimes_{\mathbb{R}} \mathbb{C}\right)
$$

Use (a) and the Chern-character (which is multiplicative with respect to tensor product) to derive the formula above expressing $p_{1}(\mathfrak{s u}(E))$ by the Chern classes of E.
(c) Derive this same formula using Chern-Weil theory: Express $\mathfrak{s u}(E)$ as an associated bundle of P_{E}, and push forward a connection from P_{E} to $\mathfrak{s u}(E)$, and conclude.
Exercice 3. Show that $U(n)$-vector bundles on 4-manifolds are classified, up to isomorphism, by their first and second Chern class. Show that this does not hold in higher dimensions. (Hint for the latter: Use that $B S U(2) \cong \mathbb{H P}^{1} \cong S^{4}$, and that G-vector bundles on a topological space X are classified by $[X, B G]$, homotopy classes of maps $X \rightarrow B G$. Use a model from the literature for $B S U(2)$, and use cellular approximation to reduce it to $\left[S^{5}, S^{4}\right] \cong \mathbb{Z} / 2$.).

