UNIVERSITÄT REGENSBURG Fakultät für Mathematik

EXERCISE SHEET 2

Raphael Zentner Felix Eberhart

Exercices labeled with a star * are going to be graded. Please hand in solutions to Felix Eberhart not later than Monday 31 May at noon.

Exercice 1*. Let $\pi: P \to M$ be a principal fibre bundle with a connection A over a connected base M. Parallel transport along a closed loop $\gamma: [0,1] \to M$ with $\gamma(0) = \gamma(1) = x$, starting at $u \in \pi^{-1}(x)$, defines an element $\in G$ by the formula

$$Par_{\gamma}^{A}(u) =: u \cdot hol_{u}^{A}(\gamma)$$

This is called the *holonomy* of γ centered at u with respect to the connection A.

- (a) Show that $hol_u^A(\gamma * \delta) = hol_u^A(\gamma) hol_u^A(\delta)$, where * denotes the composition of paths. (We use the maybe unusual convention that the path $\gamma * \delta$ denotes the path which first follows δ , then γ .)
- (b) Show that $hol_{ug} = g^{-1}hol_u g$.
- (c) Suppose $\mu: [0,1] \to M$ is some path on M. Then we have

$$hol_{Par_{\mu}^{A}(u)}^{A}(\mu * \gamma * \mu^{-}) = hol_{u}^{A}(\gamma).$$

Here, μ^- denotes the inverse path.

Taking holonomies along closed paths based at u defines a subgroup $Hol_u(A)$ of G, called the holonomy group of A centered at u, and taking holonomies of loops homotopic to the constant loop defines a subgroup $Hol_u^0(A)$ which is called the reduced holonomy group.

- (d) Show that $Hol_u^0(A)$ is a normal subgroup of $Hol_u(A)$.
- (e) Show the Holonomy reduction theorem: Let $P^A(u)$ denote the set of points that can be reached by parallel transport along (not only closed) paths starting from u. Then this defines a reduction of the structure group from G to $Hol_u(A)$ of the bundle $\pi: P \to M$.

(f) Show the *Theorem of Ambrose and Singer*: Then the Lie algebra $\mathfrak{hol}_u(A)$ of the holonomy group $Hol_u(A)$ is given as follows:

$$\mathfrak{hol}_u(A) = \{\Omega_q^A(\xi,\zeta) \mid q \in P^A(u), \xi, \zeta \in TP\},\$$

where Ω^A denotes the curvature of A.

(g) Show that if A is a flat connection, then the holonomy descends to a group homomorphism

hol:
$$\pi_1(M, x) \to G$$

 $[\gamma] \mapsto hol_u^A(\gamma).$

Exercice 2*. Let E be a U(2)-vector bundle, and P_E its associated unitary frame bundle, a U(2)-principal fibre bundle. We denote by $\mathfrak{su}(E)$ the subbundle of the endomorphism-bundle $\operatorname{End}(E) \cong E \otimes E^*$ consisting of trace-free and skey-adjoint endomorphisms. The aim of this exercise is to show that we have

$$p_1(\mathfrak{su}(E)) = -4c_2(E) + c_1(E)^2.$$

- (a) Show that $\mathfrak{su}(E) \otimes_{\mathbb{R}} \mathbb{C} \cong \operatorname{End}_0(E)$, where $\operatorname{End}_0(E)$ denotes the trace-free endomorphisms of E. Show that there is a canonical isomorphism $\operatorname{End}_0(E) \oplus \mathbb{C} \cong \operatorname{End}(E)$.
- (b) By definition of the first Pontryagin class we have

$$p_1(\mathfrak{su}(E)) = -c_2(\mathfrak{su}(E) \otimes_{\mathbb{R}} \mathbb{C}).$$

Use (a) and the Chern-character (which is multiplicative with respect to tensor product) to derive the formula above expressing $p_1(\mathfrak{su}(E))$ by the Chern classes of E.

(c) Derive this same formula using Chern-Weil theory: Express $\mathfrak{su}(E)$ as an associated bundle of P_E , and push forward a connection from P_E to $\mathfrak{su}(E)$, and conclude.

Exercice 3. Show that U(n)-vector bundles on 4-manifolds are classified, up to isomorphism, by their first and second Chern class. Show that this does not hold in higher dimensions. (Hint for the latter: Use that $BSU(2) \cong \mathbb{HP}^1 \cong S^4$, and that G-vector bundles on a topological space X are classified by [X, BG], homotopy classes of maps $X \to BG$. Use a model from the literature for BSU(2), and use cellular approximation to reduce it to $[S^5, S^4] \cong \mathbb{Z}/2$.).