Instauton Gauge Theory

$$
\text { July } 8^{\text {th }} 2021
$$

Donaldson's diagonalization theorem
The (Donaldson) X^{4} closed, oriented, smooth, simply conn with neg definite intersection form $\left(b_{2}^{+}(x)=0\right)$.
Then the intersection form is standard on $H_{2}(X ; \notin)$, i.e. there is a \mathbb{Z}-basis wot which it is given by the matres - 11

We prove this theorem by constructing on oriented, compact cobordison $X \underset{\left\{ \pm e \in H^{2}(x, t) \mid\left(e_{e}^{2}-1\right]\right.}{\mathbb{D}}$ from the ASD moduli space $\Lambda(x)$.

For rest of lecture:
Let X be a closed, or, smooth G-unfd, $P \rightarrow X \quad S u(z)$-princ. balle, $E=P$ sur \mathbb{C}^{2} sulir) con.
\& $h=-c_{2}(P)$. Lef A be any cann. on P.
Define $A_{k}:=\left\{A+a \mid a \in l_{3}^{2}\left(T^{*} X \otimes a d P\right)\right\}$ $\& \mathcal{G}_{4}:=\left(\right.$ closne of AutP in $\left.L_{4}^{2}(E n d E)\right)$
A_{u} is a Hilbet infd som to $l_{3}^{2}\left(r^{*} X_{\text {oadd }}\right)$
g_{u} is a billsot lie group. g_{u} acts sumothly on t_{4}. Regarding the yuatient,
we have:
Thmi $D=t_{u} /$ Guc $_{u}$ is Haucdorlf. Let $c>0$

$$
\& S_{A_{1} \varepsilon}=\left\{A_{1}+a \in A_{4} \mid d_{A}^{*}=0,\|a\|_{L_{3}^{2}}<\varepsilon\right\} .
$$

Then $\quad S_{a b}(A) \subseteq \mathcal{G}_{u}$ acts sumothly on $S_{A, \varepsilon}$ \& we have:
i) There is $\varepsilon>0$ sit the prog $A_{4} \rightarrow B_{4}$ induces a lome

$$
S_{A, \varepsilon / \operatorname{Stab}(A)} \cong U \subseteq B
$$

whee U is a ibid of $[A] \in D_{u}$
ii) $D_{u}^{*}:=A_{u}^{*} / \mathscr{D}_{u}\left(\mathscr{A}_{u}^{*}=(\right.$ ir red. conn. $\left.)\right)$ has
the stature of a C^{∞}-Banach-mpld with smooth atlas given by

$$
S_{A, \varepsilon} \rightarrow D_{u}^{*}
$$

(vote that $\operatorname{Stab}(A)=\{ \pm 1\}$ acts trivially)
iii) The orbits of rectucible connections in Du are soled, the action of Stab (A) $\in\{U(1), S U(2)\}$ is free on the complement of A in $S_{A, \varepsilon} \&$ the havianorphion $S_{A, \varepsilon / \int \operatorname{fab}(A)} \rightarrow U$
is a diffeom on the complement of $[A]$.

We are interested in the space μ_{4} of orbits of $A S D$ connections in $D_{l e}$ let $[A] \in \mu_{4}$ be the orbit of an ASir) conn. Then a ubrhd of $[A]$ in D_{4} is hansom to $S_{A, \varepsilon / S t a b}(A) \&$ the preimage of $A \cap M_{u}$
is $S_{A, \varepsilon}$ is

$$
\left\{A+a \mid d_{A}^{*} a=0,\|a\|_{L_{3}^{2}}<\varepsilon_{1} F_{A+a}^{+}=d_{A A S D}^{+} a+\frac{1}{\hat{T}}[a n a)\right\}
$$

$=\phi^{-1}(0)$ wher

$$
\begin{aligned}
\phi: N:=\left\{A+a \mid\|a\|_{L_{3}} \subset \varepsilon\right\} \rightarrow & \begin{array}{l}
\Omega^{0}(a d P) \\
\Theta
\end{array} \\
& \Omega_{+}^{2}(a d P) \\
A+a \longmapsto & \binom{d_{A}^{*} a}{d_{A}^{+} a+\frac{1}{2}[a \wedge a]^{+}}
\end{aligned}
$$

Fredholm maps
Def: Let M, M' be connected Banach infds. A smioth map $\phi: M \rightarrow M^{\prime}$ is Fredholm if the lom of Boush spaces

$$
D \phi_{m}: T_{m} M \rightarrow T_{\phi(m)} M^{\prime}
$$

is Teedhotm for all $m \in M$. The index of $D \phi_{m}$ is then independent of m \& called the index of ϕ.

Prop: Let M, M^{\prime} be Banach minds \& $\phi: M \rightarrow M^{\prime}$ be a Fredlolen map. Then for every m $\in M$ Hoe are ubruds 0 of m \& 0^{\prime} of $\phi(m) \&$ a comm diagram

where U_{0}, F, V_{0}, G are Banach spaces, F,6 ore finite dim with $\operatorname{dim} F-\operatorname{dim} G=\operatorname{ind} \phi, \psi, \psi 1$ are diffeom onto open uborhds of $0, L$ is a linear iso $\& \alpha$ is smith with $\left.d \alpha\right|_{0}=0$. In particular $\phi^{-1}(0)$ is Ciomeom to the preimacye of O under the smith map

$$
\tilde{\phi}(F \rightarrow G, f \mapsto \alpha(0, f)
$$

Rimli In the above statement, we can choose $F=$ lied $\phi_{m} \& \quad G=$ colierd ϕ_{m} (\& L as the rester of $d \phi_{m}$ to any coupament. subspace U_{0} of $l_{v} d \phi_{0}$)

We want to show that the map

$$
\phi: M \rightarrow \Omega^{0} \oplus \Omega_{+}^{2}
$$

is Frecthom. Its linearization is the opester

$$
d_{A}^{*} \oplus d_{A}^{+}: \Omega(a d P) \rightarrow \underset{\Omega^{\circ}(a d P)}{\Omega_{+}^{\oplus}(a d P)}
$$

It is not too herd to see that this operator is elliptic, using:

Lemma The sequence of diff ogeortors

$$
(D) O \rightarrow\left(\Omega^{\prime}(\text { ad } P)\right)_{L}^{d_{A}}(\Omega / \text { adP }) \xrightarrow[l-1]{\phi_{l}^{2}}\left(\Omega_{+}^{2}\right)_{l-2}^{2} 0
$$

is an elliptic complex.
Pf: As A is $A D, O=F_{A}^{+}=d_{A}^{+} \circ d_{A}$
$\left.\Gamma F_{A}=d_{A} \cdot d_{A}\right]$, hence (D) is a complex
Its symbol sequence af $(x, \xi) \in T^{*} X$ is

$$
\begin{aligned}
& 0 \rightarrow \text { ad } P_{x} \rightarrow T_{x}^{*} X \otimes a d P_{x} \rightarrow 1^{2} T_{x}^{*} X_{\otimes a d P_{x} \rightarrow 0}(G(D)(x, S):=S \longmapsto G \otimes s \\
& :=[D, f] \text { whee } \xi=d f \mid \quad \omega \longmapsto \xi^{+} 1 \omega
\end{aligned}
$$

\& it is an exercise in linear algebra to show that this sequence B exact at any $\xi \neq 0$, hence (D) is elliptic.

This Lemma implies that $d_{A}^{*} \oplus d_{A}^{+}$ is Fredldan (even elliptic) with

$$
\begin{aligned}
& \operatorname{her}\left(d_{A}^{*} \oplus d_{A}^{+}\right)=H^{1}((D)) \\
& \& \operatorname{colve}\left(d_{A}^{*} \oplus d_{A}^{+}\right)=H^{2}((D)) \oplus H^{0}((D))
\end{aligned}
$$

Using the Afiyah-Singer index theorem, one con show that the index of $d_{A}^{*} \oplus d_{A}^{+}$ equals

$$
8 c_{2}(p)+3\left(b_{1}(x)-b_{2}^{+}(x)+1\right)
$$

We now have:
Thm(Uhlenbech) Let X be as in Donaldson's Him i For generic metrics on X_{1} the map

$$
d_{A}^{+} \Omega^{1}(a d p) \rightarrow \Omega_{+}^{2}(a d p)
$$

is surjective.
If A is irreduable we already know that $H^{\circ}((D))=$ lied $_{A}=$ coluerdt $_{A}^{*}=0$, so h His case $d_{A}^{*} \oplus d_{A}^{+}$is sujective, O is a regular value
of ϕ \& thus $[A] \in \mathcal{M}_{k}$ has a ubithd that is a smooth submanifeld of D_{4}^{*} of $\operatorname{dim} \quad \operatorname{nder}\left(d_{A}^{*} \oplus d_{A}^{+}\right)$.

What about reducbles?
We shift our point of view slightly \& instead bole of

$$
\begin{aligned}
& \left.q_{:} S_{A_{1} \varepsilon} \rightarrow \Omega_{+}^{2}(a d p)\right) \\
& \left(\pi: A_{u} \rightarrow D_{u}\right) A_{+a} \mapsto d_{A}^{+} a+\frac{1}{2}[a \cap a]^{+}
\end{aligned}
$$

Then $\pi^{-1}\left(\mu_{u}\right) \cap S_{A_{i \varepsilon}}=\psi^{-1}(0)$ is $\operatorname{Stab}(A)-$ invariant $\&$ we get that a ubrhd of $[A] \in M_{4}$ is homoon to $\psi^{-1}(0) / S t a b(A)$.

The linearization of ψ is

$$
d_{A}^{+}: \operatorname{lerd}_{A}^{*}=T_{A} S_{A, \varepsilon} \rightarrow \Omega_{+}^{2}(\operatorname{adP})
$$

From the ellipticity of (D) we get Hat ind d_{A}^{+}ir closed \& that

$$
\begin{aligned}
& \therefore \text { herd }\left._{A}^{+}\right|_{\text {leer }} ^{A} \\
& =H^{1}((D)) \\
& - \text { colerd }\left._{A}^{*}\right|_{\text {Led }} ^{A} \\
& =
\end{aligned}
$$

are fin. dim. Hence ψ is Fredholm of index

$$
\operatorname{ind}((D))-\operatorname{dim} H^{\prime}((D))
$$

By the statement on Frechdon maps, there Hen a smooth map $\bar{\psi}: H^{\prime}((D)) \longrightarrow H^{2}((D))$ \& a homeom. $\overline{\psi-1}(0) \cong \pi-1\left(\mu_{C}\right) \cap S_{A, \Sigma}$.

The couples (D) is equipped with a Stab (A)action, hence S tab (A) acts on $\left.H^{\prime}(D)\right) \& H^{2}((D))$ \& the Uuranishi map $\bar{\psi}$ can be chosen to be Stab(A)-equivariant.
To identify this action, we note that if P reduces to an S^{1}-bale Q, then $l=Q \times \mathbb{S}$,
We have

$$
\begin{aligned}
& \operatorname{adP}= P \underset{\operatorname{sun}(2), A d}{x} \operatorname{su}(2)=(Q \times \operatorname{su}(2)) \times \operatorname{sun}(2), A_{d} \\
& \operatorname{sun}(2)= \\
&= Q \times \quad \operatorname{su}(2)=\mid \mathbb{R} \oplus L^{2} \\
& \operatorname{Ado}^{2}\left(S^{1} \subset \operatorname{sun}(2)\right)
\end{aligned}
$$

bc. Writing in $\oplus C=\operatorname{sun}(2) \ni u=\left(\begin{array}{cc}i t & 0 \\ 0 & \text { it }\end{array}\right)+\left(\begin{array}{cc}0 & z \\ -z & 0\end{array}\right)$, S^{1} acts trivially on $\left(\begin{array}{cc}\text { it } & 0 \\ 0 & \text { it }\end{array}\right)$ \& by

$$
\left(S_{1}\left(\begin{array}{cc}
0 & z \\
-z & 0
\end{array}\right)\right) \longmapsto\left(\begin{array}{cc}
0 & \rho^{2} z \\
-\rho^{2} z & 0
\end{array}\right) \quad \text { a }
$$

the second. From this , one sees that $H^{1}((D)), H^{2}((D))$ have non-canouical complex str wit which the S^{1}-action is the square of the canonical circle action on $\left.C^{n}=H^{1}(D)\right)$ $\& \mathbb{C}^{m}=H^{2}((D)) \quad\left(\right.$ Note $\quad S^{1} \cong S^{1} /\{ \pm 1\}$ acts canonically on $\left.H^{1}, H^{2}\right)$.
For x simply connected, $b_{+}^{2}(x)=0$, we can choose a metric for which $H^{2}((D))=0$, so in His case a ubitid of a reduable orbit in M_{a} is lomeomorphic to \mathbb{C}^{n} / s^{1} \& diffeom to \mathbb{C}^{n} / s^{1} off the
vertex
When $U=1$, the index of (D) is -5 . Hence, at a reducible (nontrivial) orbit, bee. $H^{\circ}((D))=\mathbb{R} \&$ we can assume $H^{2}((D))=0$ we get $\left.\quad H^{1}((D))\right)=\mathbb{R}^{6} \cong \mathbb{C}^{3}$, so we get

Thu: For generic metrics on X, every reducible orbit in M_{u} has a ubild lomeom. to $\mathbb{C}^{3} / S^{1}=\operatorname{Cone}\left(\mathbb{C} P^{2}\right)$. This howeom. is a diffean off the vertex.

What reducible outfits are there?
Prop: The orbits of the reduable conn in $\mu_{1}(x)$ for $b_{1}(x)=b_{2}^{+}(x)=0$ are in 1-1-correspondence with

$$
\left\{ \pm e \in H_{2}(x ; \mathbb{Z}) \mid e^{2}=-1\right\}
$$

The Tarbes map
Than: There is $\lambda>0$ \& smooth embedding $\quad H \times(0, \lambda) \longrightarrow \mathscr{M}_{1}$.
The image of this map is characterized as follows An orbit $[A]$ lies in $M \times(0, \lambda)$ If thee B a point $x \in X \&$ a geodesic ball B around x of radius $r<\lambda$ st.

$$
\int_{B}\left|F_{A}\right|^{2} d v o l>4 \pi^{2}
$$

By the characterization of $\operatorname{im}\left(M_{\times}(0, \lambda)\right) \subseteq \mu_{1}$ \& the proof of Ulleerbech compactness we get that every sequence of $A S D$ conn. (A_{i}) st. the sequence $\left(\left[A_{i}\right]\right)$ is disjoint from in $(M \times(0, \lambda))$ las a subsequence that converges up to gauge in C^{∞} over all of X. Hence we get

Then, $M_{1} \backslash M_{\times}(0, \lambda)$ is compact.
Now, let $\left[A_{1}\right]_{i},\left[A_{n}\right] \in \mu_{1}$ be the
reducible orbits \& N_{1}, \ldots, N_{n} open ubidds hameonn to Cone $\left(\mathbb{C} P^{2}\right)$. Then

$$
\left.\bar{\mu}=\mu_{1}\right\rangle\left(M_{x}(0, \lambda) \cup N_{1} \cup \ldots \cup N_{n}\right)
$$

is a smooth, compact S-dime info with boundary.
Thu (Donaldson) : \bar{M} is oriented.

We get a smooth, oriented, compact cabordism

$$
\bar{\mu}: X \rightarrow \mathbb{U}_{i=1}^{n_{1}} \mathbb{C} P^{2} \mathbb{\Perp} \mathbb{U}_{i=1}^{u_{2}} \overline{\mathbb{C} P^{2}}
$$

Because $\quad b_{2}^{+}(x)=0$, we

$$
r H_{H}(x ; z)=\operatorname{sign}(x)=\operatorname{sign}\left(\mathbb{H}^{n_{1}} \mathbb{C} P^{2} \Perp \mathbb{H}^{n_{2}} \overline{\mathbb{C} P^{2}}\right)=
$$

$$
=n_{1}-n_{2}
$$

In particular, the number $n_{1}+n_{2}$ of reducible must be at least rhHz $(x ; \mathbb{Z})$. On the the hand, thee are exactly \# $\# \pm e \in H_{2}(x ; z)\left(e^{2}=-1\right\}$ $\leq \mathrm{ClH}_{2}(x ; \notin)$ reducible orbits in h_{1}.

We thus get:
Prop: For x as in Donaldson's Him,

$$
\operatorname{HeH}_{2}(x ; \mathbb{Z})=\#\left[\pm e \in H_{2}(x ; z) \mid e^{2}=-1\right\}
$$

It is now easy fo see, using only linear algebor that this miplies that the intersection form is standard
(Eadh $\pm e$ induces $\left.\left.H_{2}\left(x ; Z_{e}\right)=\left\langle \pm_{e}\right\rangle \oplus\langle \pm\rangle\right\rangle\right)$

