Ex.2: Compute the par. Transport for the connection on $[0,1] \times i \mathbb{R} \rightarrow[0,1]$ described by the form $d+a$, whee $a \in \Omega^{1}([0,1], i \mathbb{R})$
Pf $[0,1] \times i \operatorname{Ris}$ the trivial ladle, there is a $C^{\infty}(I)-$ linear iso

$$
\Omega^{1}([0,1], i \mathbb{R}) \rightarrow c^{00}([0,1], i \mathbb{R})
$$

given by $a \longmapsto a\left(\partial_{+}\right)$
(where fo $[0,1] \hookrightarrow R$ is the inclusion),
A section of $[0,1] \times \mathbb{C} \rightarrow[0,1]$ is then covariant constant of

$$
\frac{d}{d t} s+a\left(\partial_{+}\right) s=0
$$

This is a linear ODE with unigue solution given by

$$
s(t)=\exp \left(-\int_{0}^{t} a\left(\partial_{t}\right) d t\right) \cdot s(0)
$$

So, $s(1)=\exp \left(-\int_{0}^{1} a\left(\partial_{+}\right) d t\right) \cdot s(0)$
\& Hus

$$
H d(d+a)=\exp (-\underbrace{1}_{\in i R} \underbrace{1}_{0} a\left(\partial_{+}\right) d t) \in S^{1}
$$

Ex 3
a) $S^{3} / C_{n} \rightarrow S^{2}$ is a pricicipal S^{2}-baudle
pfi Geneally: if $H \leq 6$ is a voramal Lic subgroup \& $\pi: P \rightarrow M$ is a pricipal G-bandle, then

$$
\pi_{H}: P / H \rightarrow M
$$

is a principal (G/H)-bandle:
Pf of this: It is clear that G/H acts freely \& smoothly on P/H \& that this action is transitive an fiber.

If $U \subseteq M$ is open \& $\phi \cdot \pi^{-1}(U) \rightarrow U \times 6$ is a friviatiation of π owe U, then
by 6 -equivariauce, ϕ induces a trivialization of π_{H} via the comm. diagram

$$
\begin{aligned}
& \pi^{-1}(U) / H \stackrel{\downarrow}{\phi_{H}}(U \times G) / H \\
& \downarrow \\
& T_{H}^{-1}(U) \xrightarrow[\phi_{H}]{\cong} U \times(G / H) .
\end{aligned}
$$

Thus, the claim.
In the case at hand we have $G=S^{1}$ \& $H=C_{n}$ \& the claim follows by observing that $S^{1} / C_{n} \cong S^{1}$ via

$$
\begin{equation*}
[z] \longmapsto z^{n} \tag{图}
\end{equation*}
$$

b) By def. $c_{1}\left(s^{3} / c_{n} x_{s} \mathbb{C}\right):=c_{1}\left(s^{3} / c_{n} \rightarrow s^{2}\right)$,

We use Chen-Weiltheory to compute the characteristic classes/numbers:
We have already seen that the restro of $\bar{z}_{1} d z_{1}+\bar{z}_{2} d z_{2}$ defines a connection A an the Hoof bale $S^{3} \rightarrow S^{e}$ with $c_{1}\left(s^{3} \rightarrow s^{2}\right)=-1$.

By lecture, A induces a connection A_{n} on $S^{3} / C_{n} \longrightarrow S^{2}$ whose curvature satisfies

$$
f^{*} \Omega_{A_{n}}=\lambda_{n, *} \circ \Omega_{A}=n \cdot \Omega_{A}
$$

where $\quad f: S^{3} \rightarrow S^{3} / C_{n} \&$

$$
\begin{gathered}
\lambda_{n, *}=i \mathbb{R} \rightarrow \text { iR, it } \mapsto \text { nit } \\
\left(\lambda_{n, *}=\text { derivative of } S^{1} \rightarrow S^{1}, z \mapsto z^{n}\right)
\end{gathered}
$$

Now let $X, Y \in \Gamma\left(T S^{2}\right) \&$ let $\tilde{x}, \tilde{y} \in \Gamma\left(T S^{3}\right)$ be arbitrary lifts of x, y $(d \pi(\tilde{x})=x, d \pi(\tilde{y})=y)$. Then

$$
f_{*} \tilde{x}, f_{*} \tilde{y} \in \Gamma\left(T s^{3} / c_{n}\right)
$$

are lifts of X, Y along $S^{3} / C_{n} \rightarrow S^{2}$.

We get

$$
\begin{aligned}
F_{A_{n}}(x, y) & =\Omega_{A_{n}}\left(f * \tilde{x}, f_{*} \tilde{y}\right)= \\
& =f^{*} \Omega_{A_{n}}(\widetilde{x}, \tilde{y})= \\
& =n \cdot \Omega_{A}(\tilde{x}, \tilde{y})= \\
& =n \cdot F_{A}(x, y)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad c_{1}\left(s^{3} / c_{n} \rightarrow s^{2}\right) & =\left[-\frac{i}{2 \pi} F_{A_{n}}\right]= \\
& =n \cdot\left[-\frac{i}{2 \pi} F_{A}\right]= \\
& =n \cdot c_{1}\left(s^{3} \rightarrow s^{2}\right) .
\end{aligned}
$$

In particular, the chen number of $S^{3} / C_{n} \quad$ is

$$
\left\langle c_{1}\left(s^{3} / c_{n} \rightarrow s^{2}\right),\left[s^{2}\right]\right\rangle=-n
$$

bc. He chaos. number of the Hoof belle is -1 .
c) The homomorphism of S'-privipal boles

$$
\binom{s^{3}}{山_{2}^{2}} \longrightarrow\binom{s^{3} / c_{4}}{s^{2}}
$$

is of type $\quad \lambda_{n}: S^{1} \longrightarrow S^{1}, z \longrightarrow z^{n}$
As we have seen in a previous exercise,

We can write His as

$$
\begin{aligned}
& \left.s_{u}=S^{1} \xrightarrow{\lambda_{k}} S^{1} \xrightarrow{s} \text { Alt (} f\right) \text { \& we get } \\
& H^{\text {oh }} \cong S_{S u}^{3} \times \mathbb{C} \cong S_{S_{\text {oink }}^{3}} \times \mathbb{C} \cong\left(S^{3} / C_{6}\right) \times \mathbb{C}
\end{aligned}
$$

Ex 4: let $f=S^{2}=\mathbb{P}^{1} \longrightarrow \mathbb{P P}^{\mu}$. Then f induces isomorphisms

$$
\begin{aligned}
& f^{*}: H^{2}\left(\mathbb{C} \mathbb{P}^{n}\right) \cong H^{2}\left(S^{2}\right) \\
& f_{*}: H_{2}\left(S^{2}\right) \stackrel{\cong}{\rightrightarrows} H_{2}\left(\mathbb{C} P^{n}\right)
\end{aligned}
$$

\& we get

$$
\begin{aligned}
& c_{1}\left(s^{2 n+1} / c_{k} \xrightarrow[n]{h_{n, k}} \mathbb{C P}^{n}\right)= \\
= & \left(f^{*}\right)^{-1}\left(f^{*} c_{1}\left(h_{n, k}\right)\right) \stackrel{\text { Nufuraltyy of } c_{1}}{=} \\
= & \left(f^{*}\right)^{-1}\left(c_{1}\left(f^{*} h_{n, k}\right)\right) .
\end{aligned}
$$

To compute $c_{1}\left(f^{*} h_{n}, l\right)$, we note that $f^{*} l_{n, 1}$ is the Hoof bundle \& the restriction of $C_{n} \Omega S^{2 n+1}$ to $S^{3} \subseteq S^{2 n+1}$ is the same action as in exercise 3.

So we get $f^{*} h_{n, h}=\left(s^{3} / c_{n} \rightarrow s^{2}\right)$
\& thus ,bc. $\left(f^{*}\right)^{-1}(1)=1$, we get that $h_{n, l} S^{2 n+1} / C_{k} \rightarrow \mathbb{C} P^{n}$ has chon class

$$
c_{1}\left(h_{n, l u}\right)=\left(f^{*}\right)^{-1} c_{1}\left(S^{3} / c_{u} \rightarrow s^{2}\right)
$$

ℓ chen number -4 .

Ex: $\pi: P \rightarrow M$ is a G-principal bundle, P carries a Riem.metric
\& G』P via isometries, then The pointuise orthogonal complement of VTP defines a connection. H

Pf: It is clear that for every $p \in P$,

$$
H_{p} \oplus V T_{p}=\left(V T_{p}\right)^{\perp} \oplus V T_{p}=T_{p} P
$$

Because taking orthogonal complements is a smooth operation (Gram-Schmidt), H $\subseteq T P$ is a subbundle.

Need to check that for every y $g \in G$,

$$
d R_{g}(H)=H
$$

Because $G \curvearrowright P$ by isometries,

$$
d R_{g}: T_{p} P \longrightarrow T_{p g} P
$$

is an isometry of Hilbert spaces. Hence,

$$
d R_{g}\left(V T_{p}^{1}\right)=\left(V T P_{p g}\right)^{\perp}=H_{p g} T_{1 / S}
$$

C_{1} is determined by the map

$$
\begin{gathered}
c_{1}: H_{2}\left(\mathbb{C} P^{n}\right) \rightarrow \mathbb{R} \\
\| \\
\left\langle\left[\mathbb{C} P^{1}\right]\right\rangle
\end{gathered}
$$

$$
\begin{gathered}
F_{A}=F_{A} \\
\text { self dual } \\
\sim c_{2}(E \rightarrow M)=\left\|F_{A}\right\|_{L^{2}}
\end{gathered}
$$

Auti-self dual:

$$
\begin{gathered}
* F_{A}=-F_{A} \\
m C_{2}(E \rightarrow M)=-\left\|F_{A}\right\|_{2} \\
\left\|F_{A}\right\|_{2}=-\int_{M} H_{M}\left(F_{A} \wedge F_{A}\right)= \\
=\int_{T} H_{1}\left(F_{A} \wedge * F_{A}\right)= \\
\text { if } A \text { is } M \\
A S D
\end{gathered}=C_{2}(A)
$$

Upshat: If $c_{2}(E) \neq 0$, then E cannct have both self-dual \& auti-self-clual connections.

Thus: If both P_{+}\& P_{-}are top. vontriv. $\left(C \Leftrightarrow c_{2}\left(P_{+}\right), c_{2}\left(P_{-}\right) \neq 0\right)$, then we get $P_{+} \neq P_{-}$if we find an ASD conn, on one \& an SD conn. on the other.

Ex 7: a) Claim $H \mathcal{P}^{1} \cong$ diff S^{4}.
Pf: S^{4} is diffeomorplic, via stereographic projection, to $H \cup\{\infty\}$ with the dill str. defined by the charts

$$
q=i d_{H}: H \rightarrow H \cong H^{4}
$$

\&

$$
\begin{aligned}
q^{-1},(H \backslash\{0\}) \cup\{\infty\} & \longrightarrow H H, \\
q & \longmapsto \begin{cases}q^{-1}, & \text { if } q \neq \infty \\
0, & \text { if } q=\infty\end{cases}
\end{aligned}
$$

The map

$$
\begin{aligned}
& H \times I H \geqslant S^{7} \xrightarrow{H}\binom{q_{1}}{q_{2}} \longmapsto\left\{\begin{array}{l}
\left.\infty_{0}\right\}, \\
q_{1} q_{2}^{-1}, \text { if } q_{2} \neq 0 \\
\infty, \text { if } q_{2}=0
\end{array}\right. \\
& \text { is } S^{3}-\text { invariant }\left(\varphi\binom{q_{1} \cdot u}{q_{2} \cdot u}=\left(q_{1} u\right)\left(q_{2} u\right)^{-1}=\right. \\
& \\
& \left.\left.=q_{1}(u \cdot u)^{1}\right) q_{2}^{-1}=\varphi\binom{q_{1}}{q_{2}}\right)
\end{aligned}
$$

sujective (bc. it is continuous, $\mathrm{H} \cup\{\infty\}$ is connected \& S^{7} is compact)
\& is smooth \& Huns induces a smooth sag.

$$
S^{7} / S^{3} \rightarrow \operatorname{Hu}\{\infty\} .
$$

A smooth inverse is given by

$$
q \longmapsto \begin{cases}{[q: 1],} & q \neq \infty \\ {[1: 0],} & q=\infty\end{cases}
$$

